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Abstract
This paper presents ICOS, a meta-operating system designed for
the cloud continuum. The paper provides insight into the ICOS
architecture, focusing on the Intelligence Layer and highlighting
the benefits and functionalities it provides to administrators and
users of the edge-to-cloud continuum. It also describes in detail
some experimental results to predict the CPU utilization of the
nodes that build up the ICOS system. The purpose of this paper is
to show the benefits of using ICOS with AI-subsystem and illustrate
them through real experiments.
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1 Introduction
In light of the advent of 6G and related technologies like the prolif-
eration of AI and ML applications that are being used in all kinds
of areas, computing has to become omnipresent to drive a diverse
range of use cases. In modern environments, this can be realized by
utilizing cloud computing together with edge computing to provide
flexible processing and IoT to gather data or instruct actuators [10].
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Due to the sheer number of devices, managing such a variety of re-
sources individually becomes virtually impossible, so infrastructure
providers try to merge them together into the so-called IoT-Edge
Cloud continuum.

The continuum allows providers to treat the whole environ-
ment as one, abstracting away the difficulties of individual resource
scheduling and allocation while simultaneously allowing for great
flexibility in workload distribution [9]. While this moves complex-
ity away from the user, the management has to be taken care of
by a system that is able to make effective use of the computational
capabilities of all devices, assign workloads dynamically, and in-
teract with many technologies at once [8]. Especially the latter
can become quite complicated as the continuum might leverage
different platforms like Kubernetes, OpenShift, Docker, or other
solutions for different domains and devices, depending on their
individual capabilities, roles, and integrated environments. This
coordination and orchestration effort demands a Meta Operating
System for the continuum; a role that has captured the attention of
researchers [13, 14] and EU projects [1, 3, 5–7], and that ICOS [4],
the intelligent MetaOS for the continuum, fills.

ICOS allows the user to interact with a single system to manage
their applications, regardless of where the individual workloads
are being run. The user merely states what properties the compo-
nents of each application need, e.g., a certain amount of compute
resources, a minimum security level, or a connection to specific
IoT devices like cameras, while ICOS takes care of the placement
of each component as well as their inter-connection even across
cluster boundaries if necessary. Placing these components not only
requires knowledge of the node’s connected devices, their compute
resource utilization, and other potentially dynamic properties but
also demands the ability to foresee the changes in these dimensions
after the components have been deployed. This requires ICOS to
employ sophisticated matchmaking and prediction capabilities to
anticipate the foreseeable future whenever components have to
be placed on compute nodes. In addition, advanced features for
sophisticated decision-making like user-defined policies, forecast
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metrics, and ML model creation are needed for the MetaOS to be
able to fulfill the demanding task of application placement across
such a vast number and range of hardware.

In this paper, we lay out the architecture of ICOS, explain its
components and how they interact with each other. We then pro-
vide deeper insight into the intelligence layer, the AI-subsystem,
highlighting the benefits and functionalities it provides to adminis-
trators and users of the ICOS system. We then describe the architec-
ture of an experimental setup, focusing on the end-to-end learning
framework which we then use for CPU utilization forecasting with
data corresponding to three ICOS nodes and present the results,
showing the accuracy of this prediction.

Our main contributions can be summarized as follows:
• present and describe the ICOS MetaOS architecture,
• lay out the details of the ICOS AI subsystem,
• conduct an experiment to show the benefits of this research.

The remainder of the paper is organized as follows: Section 2
presents the ICOS architecture. Section 3 describes the Intelligence
Layer of the system. Section 4 then provides the details and results
of our experimentation, and section 5 concludes the paper.

2 ICOS Architecture
The ICOS MetaOS for the continuum has been designed with two
main roles: Controllers and Agents. ICOS Controllers have two
main responsibilities: managing the resources along the continuum
and providing an efficient and effective execution environment.
ICOS Agents represent an ICOS delegate that runs along the contin-
uum and becomes a single point of management on the computing
devices (hereafter referred to as nodes) attached to them.

An ICOS instance requires at least one Controller to be responsi-
ble for managing the continuum and making the runtime decisions.
However, ICOS has been designed as a multi-controller system.
This means that more than one Controller could cooperate in the
management of ICOS. The reason for having more than one Con-
troller could be twofold: either because one Controller has too
many Agents attached to it and it is becoming a bottleneck (scal-
ability), or because some Agents are too far from the Controller
and latency is becoming an issue (locality). Agents are the ICOS
point of management on the computing nodes (either in the cloud
or at the edge). One or more nodes are attached to an Agent, and
one or more Agents are connected to a Controller. Fig. 1 shows an
illustration of a typical ICOS instance. In this figure, a set of more
or less powerful computing devices (nodes) can be seen at the edge,
which are attached to different Agents (one Agent can be managing
several nodes). In addition, one cluster in the cloud is also attached
to an Agent. Finally, all agents are connected to a controller, who
will be responsible for managing the continuum.

The architecture of an ICOS Controller has been conceived as
a three-layer design: the Meta-kernel Layer, which provides all
functionalities related to resources and runtime management; the
Intelligence Layer, which implements all functionalities related
to intelligence training and model management; and the Security
Layer, that implements all the authentication, authorization, and
trust mechanisms.

The Meta-kernel Layer is organized into three main blocks:
the Continuum Management, the Runtime Management, and the

Figure 1: Typical ICOS instance.

Telemetry Controller, as can be seen in Fig. 2. The Continuum
Management block is responsible for keeping track of the devices
in the continuum along with information about their status (e.g.,
availability) and includes the Resource Onboarding component,
which is responsible for managing the dynamic node onboarding
process, and the Aggregator component, responsible for retrieving
all static and dynamic resource-related information from the sys-
tem database. The Runtime Management block is responsible for
managing all requests related to the execution of an application
along the continuum. This block includes the Job Manager, respon-
sible for managing the execution lifecycle of jobs; the Matchmaker,
responsible for finding the appropriate nodes to execute each ap-
plication component according to some user-defined SLA, and the
Policy Manager, responsible for monitoring the execution of ap-
plications and detecting and remediating any potential violations
in the expected execution performance. And finally, the Telemetry
Controller builds and manages a sophisticated telemetry system
that collects detailed telemetry information from the underlying
nodes and stores it in a time-series database. This information will
later be retrieved by the Aggregator (presented above) to create
a comprehensive snapshot of the system topology and its instan-
taneous state. The collected data contains information about the
resources’ capacities, their status, their consumption, and their se-
curity score (SCA, generated as part of the Security Layer), among
others. This detailed information allows an efficient and effective
selection of the nodes that should execute a job in the continuum.

On the other hand, the architecture of an ICOS Agent consists of
four main components, as shown in Fig. 3. The Onboarding Man-
ager is the component responsible for managing the onboarding of
the Agent itself, as well as of the resources (nodes) attached to it,
and coordinates the onboarding process with the Controller. The
App Setup Manager is responsible for configuring the nodes prior
to the execution of an application (in particular, when cross-cluster
operation is required), and the Deployment Manager is the com-
ponent responsible for the actual deployment of the container on
the target node (according to the Controller’s placement instruc-
tions). Finally, the Telemetry Gateway is responsible for collecting
all telemetry data from the underlying nodes and transferring them
to the Telemetry Controller.
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Figure 2: Architecture of an ICOS Controller.

Figure 3: Architecture of an ICOS Agent.

The basic process for running an application is carried out as fol-
lows. At the Controller level, the Job Manager receives an execution
request. This requests an optimal mapping from the Matchmaker,
which considers not only the characteristics and topology of the
available nodes but also their current and predicted availability
(provided through the Intelligence Layer) and other user-defined
preferences. All this resource-related information is extracted by
the Aggregator from the database fed by telemetry. Once the Job
Manager knows the target nodes that should run the application,
it communicates with the appropriate Agents to offload the execu-
tion of the corresponding container. Now, the App Setup Manager
configures any initialization settings, and the Deployment Manager
launches the container for execution on the target nodes.

Meanwhile, the Telemetry Gateway collects complete telemetry
information fromnodes that will feed the Telemetry Controller time-
series database. This process, together with the rich data collected in
ICOS, shapes a comprehensive mechanism that becomes the root of
a sophisticated intelligence-based subsystem and an opportunity to
leverage ML-based technology. In the next section, the Intelligence
Layer is introduced. The Security Layer is out of the scope of this
paper; however, a complete description can be found in [11].

3 The Intelligence Layer
The Intelligence Layer is a core component in the ICOS ecosys-
tem that enables optimizing AI operations across the edge-to-cloud
continuum. It orchestrates model coordination, optimization, and
monitoring, ensuring robust support for predictive analytics and
real-time decision-making. The Intelligence Layer is made of the

following four modules within the ICOS Controller: i) Intelligence
Layer Coordination module, ii) Data Processing module, iii) AI An-
alytics module, and iv) Trustworthy AI module. On top of this, it
integrates with an online repository of AI models and data gener-
ated using ICOS 1. The next subsections explain the main modules
and functionalities within the Intelligence Layer that contributed
to the experimental results in Section 4.

3.1 Intelligence Layer Coordination Module
The Intelligence Layer Coordination Module coordinates AI model
training, inference, and deployment for models that forecast fu-
ture usage metrics while ensuring seamless sharing, updating, and
integration within the ICOS framework. It provides APIs to facili-
tate efficient model coordination and maintains a model registry
with essential metadata, including descriptions, algorithms, and
performance metrics, while it operates across the cloud continuum.
Key performance indicators, such as training and validation curves,
are tracked using MLOps monitoring tools to ensure continuous
optimization. This module is divided into frontend and backend
APIs, which are described in the next subsections.

3.1.1 AI coordination frontend (Export metrics API). The Export
Metrics API, as part of the AI coordination frontend, serves as the
gateway for the ICOS MetaOs to the Intelligence API. It connects
with other ICOS components and gives ICOS the capability of met-
ric forecasting. It automates the metric collection, preprocessing,
and model updates, using Grafana and Prometheus to retrieve and
structure telemetry data. Enabling time-series preprocessing for
both univariate and multivariate models ensures efficient real-time
monitoring, predictive analytics, and AI-driven decision-making.

It allows ICOS developers to request new models to the Intel-
ligence layer through the /create_model_metric endpoint. Addi-
tionally, it queries the ICOS Aggregator through Telemetry in the
background to proactively create new AI models and forecasts for
key utilization metrics in new ICOS nodes.

3.1.2 AI coordination backend (Intelligence API). The Intelligence
Layer Coordination API serves as the backend of the Intelligence
Layer, interacting with its model registry and managing the layer’s
modules to coordinate AI model training, prediction, and moni-
toring. It provides AI experiment tracking functionality, including
model performance indicators, training loss curves, and leverag-
ing tools like MLFlow 2 to enable AI experiments across the cloud
continuum. It supports model versioning through a model registry,
asynchronous model serving, and micro-batching using BentoML 3.

3.2 Data Processing Module
This module focuses on managing the reading and writing opera-
tions as well as data transformation and preparation. It tackles raw
data retrieved from the data management component (dataClay4)
and converts it using libraries such as NumPy5 and pandas6 into
structures optimized for training machine learning models.

1ICOS AI Models and Data Repository: https://huggingface.co/ICOS-AI
2MLFlow platform: https://mlflow.org
3BentoML model-serving framework: https://github.com/bentoml/BentoML
4dataClay distributed data storage: https://github.com/bsc-dom/dataclay
5NumPy: https://numpy.org
6pandas: https://pandas.pydata.org
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This module can distribute the processing workload to improve
efficiency.When a request comes into the Intelligence Layer, compu-
tationally heavy operations, particularly model training, are trans-
ferred using dataClay to other ICOS nodes for processing.

3.3 AI Analytics Module
The AI Analytics module is a machine-learning toolkit designed
to optimize workload distribution by aggregating energy-efficient
task offloading strategies, security, load balancing time series fore-
casting (including anomaly detection), and CPU or RAM utilization
forecasting. It supports improved resource management through
multivariate metrics forecasting, model compression techniques
for efficient AI training and inference, and integration with data
pipelines through the Data Processing module for optimized data
preprocessing.

(1) Anomaly detection: identifying irregularities in system
behavior.

(2) Metrics forecasting: predicting load balancing, CPU utiliza-
tion, RAM, or energy to be consumed by an ICOS node [12].

3.4 Trustworthy AI Module
This module aids the Intelligence Layer in meeting with the Trust-
worthy AI pillars [16]. It incorporates:

(1) Model explainability: SHAP (Shapley Additive Explana-
tions) 7 is integrated within the Intelligence Layer to inter-
pret predictions and provide explainability and transparency,
helping to reduce model bias.

(2) Confidence estimation: confidence scores and intervals to
quantify prediction reliability for every prediction.

(3) Drift detection and model performance estimation: to
monitor data distribution changes and concept drifts [12, 15]
, helping to increase the overall robustness of the models
monitored. This is achieved by integrating NannyML 8 into
the Intelligence Layer.

(4) Federated learning: for privacy-aware mode training. This
helps further reduce data movement from edge devices.

This papermakes use of the three Intelligence Layermodules cov-
ered, placing special emphasis on the federated learning component
introduced in this section. Federated learning in ICOS leverages
the Flower framework 9 that enables collaborative model training
across multiple decentralized devices or organizations while pre-
serving data privacy. When local models, trained throughout the
ICOS infrastructure, are combined into a single model, this aggre-
gated (global) model becomes part of the AI coordination backend
model registry and is available for inference (like any other model
trained via the Intelligence Layer.

4 Experimental Results
In this section, we present the architecture of the experimental
setup, focusing on the end-to-end learning framework of both stan-
dalone and federated learning pipelines [2]. Then, based on the
proposed architectural sequence, we provide numerical results for
CPU utilization forecasting with data corresponding to three ICOS
7SHAP library: https://shap.readthedocs.io
8NannyML framework: https://www.nannyml.com
9Flower library: https://flower.ai
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Figure 4: Experimental Setup for ICOS-based CPU Monitor-
ing and Pattern Learning.

nodes, and we compare the prediction accuracy of multiple single-
model algorithms (GRU, Transformer, RNN, LSTM) and federated
learning.

4.1 Architectural Learning Framework
The architectural setup of ICOS MetaOS has been designed to facil-
itate a complete learning sequence, encompassing both standalone
(i.e., single-model) and Federated Learning (FL) paradigms. Figures
4 and 5 illustrate the flow of operations within the ICOS framework
for these learning processes.

4.1.1 Standalone Learning Sequence. Figure 4 depicts the experi-
mental setup for ICOS-based CPU monitoring and pattern learning.
This sequence can be generalized to any other metric, such as mem-
ory usage, disk capacity, or power consumption of ICOS nodes. The
sequence begins at the ICOS nodes (Step 0), where the Telemetry
Agents continuously collect metrics from the CPU of ICOS nodes.
These metrics are transmitted through the telemetry gateway to
the ICOS Controller. The Telemetry Controller (Step 1) processes
these metrics (Step 3) and exports them via the Metrics Export
API (Step 4). This API provides the metrics to the Intelligence API
(Step 5), which communicates with the Model Repository (Step
6) to access or store models for training or inference. The result-
ing trained model is utilized for real-time inference, completing
the feedback loop to optimize CPU utilization dynamically. For in-
stance, model inference may produce hourly predictions regarding
the upcoming CPU usage at the ICOS nodes, representing their
overall load status. Note that final predictions are posted back in
the Telemetry Controller, which is interfaced with Meta-kernel
components (e.g., Policy Manager or Matchmaking component) for
further AI-aided operations (e.g., intelligent matchmaking to assign
application components to idle or non-overloaded ICOS nodes).

The modular design of the ICOSMetaOS allows seamless integra-
tion of components and ensures the scalability of the telemetry-to-
intelligence pipeline. This framework ensures robust data collection,

https://shap.readthedocs.io
https://www.nannyml.com
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processing, and model deployment for efficient resource utilization
in a distributed environment.

4.1.2 Federated Learning Sequence. Figure 5 demonstrates the ar-
chitecture for FL within the ICOS MetaOS. In this sequence, the
ICOS controller coordinates FL rounds by initializing the ICOS-
FL-Controller module. This controller interacts with the Model
Repository to distribute the initial global model parameters to ICOS
nodes.

Each ICOS node hosts an ICOS-FL-Client module, which par-
ticipates in FL rounds by training local models on their respective
datasets. The training process leverages OpenTelemetry and Data-
Clay layers for data collection and management. For nodes that sup-
port energy monitoring, such as those equipped with Scaphandre,
additional metrics are integrated to optimize energy consumption
during training.

Once the local training is complete, the ICOS-FL-Clients send the
updated model parameters back to the ICOS-FL-Aggregator, which
combines them to produce an updated global model. This process
iterates until the desired model performance is achieved. The final
model is then stored in the Model Repository and is available for
future inference by Meta-kernel components.

By leveraging FL, the ICOS framework enhances privacy and
reduces bandwidth usage, making it suitable for applications where
data cannot be centralized and ICOS node owners require data
privacy preservation (i.e., FL clients share only their local model
parameters).

4.2 Numerical Results
In this subsection, we evaluate the performance of ICOS MetaOS
in predicting CPU utilization under two scenarios: standalone and
federated learning.

4.2.1 Standalone Learning Performance. We consider CPU utiliza-
tion time-series data from three ICOS nodes. The sampling rate
of each CPU dataset is one hour, whereas the size of the datasets

Table 1: Evaluation Metrics of ML Models across ICOS Nodes

Node Model MAE MSE RMSE 𝑅2

LSTM 0.04319 0.00442 0.06646 0.99559
GRU 0.05577 0.00513 0.07161 0.99488
RNN 0.04959 0.00409 0.06398 0.99591Node 1

Trans. 0.04297 0.00328 0.05728 0.99672
LSTM 0.04190 0.00275 0.05243 0.99725
GRU 0.04353 0.00294 0.05423 0.99706
RNN 0.06439 0.00626 0.07911 0.99374Node 2

Trans. 0.05499 0.00453 0.06727 0.99547
LSTM 0.35873 0.15138 0.38907 -0.95337
GRU 0.10137 0.01664 0.12899 0.78529
RNN 0.42552 0.19355 0.43994 -1.49755Node 3

Trans. 0.60247 0.41862 0.64701 -4.40195

is 5000 data points. CPU utilization is measured as a percentage
(0–100%). Each ICOS node has been monitored during the execution
of different computational tasks, including:

• The task underlying the dataset of ICOS Node 1 was an
automated database backup system characterized by highly
regular periodicity.

• The task corresponding to the second node’s dataset was a
video rendering farm, presenting wave-like CPU behavior
with gradual transitions (20%–80%) with predictable usage
patterns.

• ICOS Node 3 was monitored when serving as a production
web application server, showing irregular CPU fluctuations
(62%–76%).

For each node, four machine learning models, namely RNN, GRU,
Transformer, and LSTM, were independently trained and tested
to forecast CPU usage. For all models, historical CPU utilization
data was first scaled and then segmented using a recursion window
of 5 samples (i.e., a lookback window of 5 hours), with a predic-
tion step of one value ahead (i.e., forecasting the CPU usage in the
next hour). The models were trained using the Mean Squared Error
(MSE) as a loss function and optimized via grid-search hyperpa-
rameter tuning (including learning rate, number of hidden layers,
and activation functions). The training progress was monitored
through loss-versus-epoch curves.

As shown in Table 1, key performance metrics, including Mean
Absolute Error (MAE), MSE, Root MSE (RMSE), and 𝑅2, were calcu-
lated to compare the predictive capabilities of the models across the
three nodes. Note that the bold-noted rows in Table 1 correspond
to the best-performing models per ICOS Node. Figure 6 shows the
fitness of the predicted testing values on the actual curve for each
node-specific optimal model.

Evidently, the ML performance differences across ICOS nodes
stem from the distinct temporal patterns in CPU utilization. In Node
1, where CPU load is highly periodic, LSTMs and Transformers
excel by capturing long-term dependencies and recurring trends.
In Node 2, with smooth wave-like transitions, LSTMs perform best
as they efficiently model gradual variations. In Node 3, where CPU
usage is irregular, GRUs outperform others due to their ability to
adapt to short-term dependencies and volatile patterns.
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Figure 6: Actual versus predicted CPU usage curves consider-
ing the optimal model of each ICOS node.

4.2.2 Federated Learning Accuracy. For the FL scenario, the ac-
curacy of the aggregated global model was compared against the
standalone models. The federated approach achieved comparable
or superior accuracy while preserving data privacy. Figure 7 depicts
the actual and the predicted values as they derived from the FL
model. Specifically, the FL approach shows strong overall perfor-
mance for Nodes 1 and 2 with 𝑅2 values of approximately 0.9936.
For Node 3, the evaluation score yields an 𝑅2 of 0.8393. This dis-
crepancy suggests that, although the FL model generalizes well for
the broader patterns, it struggles to capture finer-scale variations
in Node 3.

Overall, the experimental results validate the effectiveness of
ICOS MetaOS in supporting advanced learning frameworks, en-
abling intelligent resource management in distributed environ-
ments.

5 Conclusions and Future Work
In this paper, the purpose and main goal of the ICOS MetaOS has
been presented. The system architecture has been described, distin-
guishing between two main roles: ICOS Controller and ICOS Agent.
The main focus of this paper has been put on the Intelligence Layer,

Figure 7: Actual versus predicted CPU usage curves consider-
ing the Federated Learning model applied to each ICOS node.

which provides vital tools for optimizing operations performed
throughout the edge-to-cloud continuum.

The conducted experiment, which has been thoroughly pre-
sented, confirmed that the learning framework, implemented as a
part of the Intelligence Layer, stood up to its task when it came to
predicting onboarded nodes’ CPU utilization, both in the standalone
and federated learning paradigms. The federated learning approach
not only achieved comparable or superior results compared to stan-
dalone learning but also allowed data privacy to be preserved. At
this stage of the project, the experiment’s results are promising,
as the overall system’s performance can still be enhanced in the
following months.

The contribution of this work is a functional edge-to-cloud
metaOS, utilizing AI tools to improve the system’s performance
and efficiency. The future research directions consist of, but are
not limited to: a) apply the prediction mechanisms to a larger set
of metrics including system performance, security and application
performance metrics; b) deeply integrate the AI predictions with
orchestration and policy engines to timely react to predicted dis-
turbances of the system efficiency and applications performance
and re-establish the optimal conditions; c) correlate metrics and
predictions to the delivered applications’ quality of experience to
enable optimizations tailored on the specific applications.
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